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Purpose of review

The recent advances in our understanding of stem cell biology, the availability of

innovative techniques that allow large-scale acquisition of stem cells, and the increasing

pressure from the multiple sclerosis (MS) patient community seeking tissue repair

strategies have launched stem cell treatments as one of the most exciting and difficult

challenges in the MS field. Here, we provide an overview of the current status of stem

cell research in MS focusing on secured actuality, reasonable hopes and unrealistic

myths.

Recent findings

Results obtained from small clinical studies with transplantation of autologous

hematopoietic stem cells have demonstrated that this procedure is feasible and

possibly effective in severe forms of MS but tackles exclusively inflammation without

affecting tissue regeneration. Results from preclinical studies with other adult stem cells

such as mesenchymal stem cells and neural precursor cells have shown that they may

be a powerful tool to regulate pathogenic immune response and foster tissue repair

through bystander mechanisms with limited cell replacement. However, the clinical

translation of these results still requires careful evaluation.

Conclusion

Current experimental evidence suggests that the sound clinical exploitation of stem cells

for MS may lead to novel strategies aimed at blocking uncontrolled inflammation,

protecting neurons and promoting remyelination but not at restoring the chronically

deranged neural network responsible for irreversible disability typical of the late phase of

MS.
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Introduction

In the last few years, the extraordinary progress in our

understanding of adult stem cell biology has led to major

advances in the field of cell therapy, allowing us to

translate our basic knowledge about different kinds of

stem cells into therapeutic strategies aimed at treating

neurological diseases such as multiple sclerosis (MS).

Although autologous hematopoietic stem cell transplan-

tation (AHSCT) has now been proven to be a powerful,

although risky, therapy for some forms of MS, other stem

cell types have gained attention as potential future

therapeutic options for MS. However, experimental data

have posed us with an unforeseen scenario. As most

scientists moved into the stem cell arena due to an unmet

need for therapies for tissue repair, current evidence

suggests that stem cells that have been proven to ame-

liorate symptoms and protect neural cells in experimen-

tal autoimmune encephalomyelitis (EAE), a model of

MS, also have a limited, if any, capacity for transdif-

ferentiating into neural cells, but may foster tissue
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protection and repair through unexpected mechanisms

of action.
Autologous hematopoietic stem cells for the
treatment of autoimmunity
AHSCT has been proposed for severe autoimmune dis-

orders unresponsive to conventional treatments [1] based

on results from experimental models [2]. AHSCT pro-

cedure consists of mobilization from the bone marrow of

peripheral blood stem cells (PBSCs) usually with cyclo-

phosphamide in combination with granulocyte-colony

stimulating factor. PBSCs expressing the surface antigen

CD34 are collected by leukapheresis and cryopreserved.

The graft can be manipulated with a positive selection of

CD34þ cells or a negative depletion of T cells, in order to

eliminate autoreactive clones. The patient is then treated

with the conditioning regimen, usually with high-dose

cytotoxic agents such as BEAM (BCNU, carmustine,

etoposide, cytosine–arabinoside and melphalan), total

body irradiation (TBI) or other various combinations of
rized reproduction of this article is prohibited.
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cytotoxic agents. The conditioning regimens are usually

classified as high-intensity (TBI or any busulphan-con-

taining protocol), medium-intensity (BEAM, carmustine

and cyclophosphamide) or low-intensity regimens (cyclo-

phosphamide alone or fludarabine-based schemes). The

cryopreserved graft is then re-infused into the patient and

antithymocyte globulin (ATG) is administered in order

to eradicate self-reactive T cells. After a period of aplasia

of 2–3 weeks, engraftment occurs. The rationale of the

procedure relies on intense immunosuppression aimed

at destroying autoreactive cells and the subsequent

immune reconstitution that is associated with profound

qualitative changes of the immune repertoire.
Autologous hematopoietic stem cell
transplantation in multiple sclerosis: clinical
outcome
More than 400 MS cases have been reported so far in the

European Bone Marrow Transplantation database. How-

ever, although no phase III clinical trial has been com-

pleted yet, a series [3��] of small phase I/II studies have

been reported. Despite the concerns regarding different

protocols and disease forms treated, 60–70% of patients

after 3 years and 50–60% after 6–8 years do not progress

from transplantation [4]. In a recent study [5], 50 MS

patients were treated with BEAM and ATG followed

by AHSCT at different disease phases with Expanded

Disability Status Scale (EDSS) ranging from 1.5 (‘early

AHSCT’) to 8.0 (‘salvage AHSCT’). The procedure was

well tolerated and effective and 62% of patients

improved at least 0.5 points on EDSS, particularly when

AHSCT was performed in young individuals. Pro-

gression-free survival at 6 years was 72%. The Canadian

MS BMT Study Group [6] treated 17 aggressive MS

patients with a high-intensity conditioning regimen

(busulphan and cyclophosphamide) with ex-vivo and

in-vivo T-cell depletion. These patients had a favorable

outcome, with 75% progression-free survival at 3 years,

without any relapse or new MRI lesions nearly 5 years

after treatment [6]. The retrospective analysis of trans-

planted patients data performed in 2002 [7] and 2006 [4],

did not show any difference in disability progression

between high and intermediate-intensity regimens,

whereas a correlation was observed for transplant-related

mortality (TRM; 6 and 5.3%, respectively) and regimens

including busulphan. Although TRM has been reported

to decrease to 1.3% in a recent analysis [3��], most likely

as a result of better patient selection and improved

experience of the transplanting centers, low-intensity

treatments, with minimal myelotoxic effects, have been

proposed [8�]. In a recent study, 21 young, relapsing–

remitting MS (RRMS) patients with mild disability and

short disease duration were treated using a low-intensity

conditioning regimen (cyclophosphamide 200 mg/kg

followed by alemtuzumab or ATG). After 3 years, 81%
opyright © Lippincott Williams & Wilkins. Unauth
of patients improved by at least 1 point on EDSS and 62%

were disease free. Modest toxicity was reported and 23%

of patients relapsed after 6–16 months. Recently, in an

open-label study [9], the effect of low-intensity (cyclo-

phosphamide and rabbit ATG) and medium-intensity

(BEAM and horse ATG) regimens was addressed.

Regardless of a similar clinical outcome, individuals

treated with cyclophosphamide and rabbit ATG dis-

played significantly less toxicity as compared with those

treated with BEAM and ATG.

AHSCT has also been reported to have a significantly

positive impact on rapidly evolving, ‘malignant’ MS

refractory to conventional treatments [10]. In a small

cohort of young patients with RRMS presenting with

high number of relapses per year and high EDSS,

AHSCT was able to halt disease progression and reverse

disability [11]. Overall, these studies confirm that

AHSCT is more effective in very active, young RRMS

individuals with a short disease history.
Autologous hematopoietic stem cell
transplantation-related changes of the
immune repertoire
The restoration of immune tolerance following AHSCT

is characterized by a profound renewal of the T-cell

repertoire mainly due to the expansion of naive CD4þ

T cells of recent thymic origin [12]. This study [12]

suggests for the first time that AHSCT results in the

induction of a new immune system less prone to self-

reactivity. Although self-reactive T cells may persist after

transplantation [13,14], they do not seem to arise from

mobilized HSC-enriched graft [15�]. Thus, some peri-

pheral or central nervous system (CNS) infiltrating T and

B-cell clones may survive the conditioning regimen, as

demonstrated by the persistence of oligoclonal bands in

the cerebrospinal fluid of most patients and high levels of

soluble CD27, a marker of lymphocyte activation, after

AHSCT [16�].
Future perspective for autologous
hematopoietic stem cell transplantation in
multiple sclerosis
At the present time, a few studies on AHSCT in severe

forms of MS are ongoing, including ASTIMS (Autologous

Stem cell Transplantation International Multiple

Sclerosis), a European Union-based phase II study com-

paring the effect of AHSCT versus mitoxantrone, which

has been recently stopped for the insufficient accrual of

patients, the Halt-MS study, a US trial, investigating

the effect of BEAM, ATG and CD34þ cell selection in

RRMS or progressive–relapsing MS patients and the

‘Stem Cell Therapy for Patients with MS Failing Inter-

feron’ randomized clinical trial in the United States
orized reproduction of this article is prohibited.
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enrolling inflammatory patients with the aim of compar-

ing transplantation of unmanipulated autologous PBSCs

using a conditioning regimen of cyclophosphamide and

ATG versus US Food and Drug Administration-approved

MS therapies. The scientific community interested in

AHSCT for MS met recently in Florence on 19–20

November 2009, discussing the possible design of a

two-arm study focusing on young rapidly deteriorating

patients refractory to standard therapies and with clinical

and MRI signs of disease activity. Patients will be random-

ized to an intermediate intensity regimen or the best

available treatment, with the possibility to crossover into

the other study arm in case of continuing disease activity.

Although the clinical effectiveness of AHSCT compared

with conventional therapies is still debated, a recent

analysis [17] of cost effectiveness of AHSCT versus

mitoxantrone in secondary progressive MS suggests that

the probability of AHSCT being cost effective, when

TRM is low, depends on the achievement of a long

enough disease stabilization (10 years).
Mesenchymal stem cells definition
Multipotential stromal precursor cells were first isolated

from the bone marrow, as the common ancestors of

mesenchymal tissues such as cartilage, fat, bone and

other connective tissues [18], and commonly termed as

mesenchymal stem cells (MSCs). Many other tissues

have been reported to be the source of MSCs, more

recently the vasculature being a source of perivascular

cells with the phenotype of MSCs [19,20�]. The study

[19] demonstrates that bone marrow stem cells capable of

giving rise to the complete hematopoietic microenviron-

ment reside exclusively in a small fraction of perivascular

cells. However, such a conventional view of marrow stro-

mal cell plasticity was challenged by several studies report-

ing their capability to also differentiate into cells from

unrelated germ lineages including neural cells [21,22].

This heterogeneity is reflected by a complex transcrip-

tome encoding a wide array of proteins involved in a large

number of diverse biological processes that are likely to

result in some unexpected therapeutic features [23].
Mesenchymal stem cells display
immunomodulatory properties
Several reports have demonstrated in the last few years

that MSCs are endowed with a robust regulatory effect on

many cells of innate and adaptive immunity [24��]. MSCs

were first demonstrated to inhibit in-vitro proliferation of

T cells [25,26] and this was later demonstrated to be the

result of an inhibition of T-cell division [27]. More

recently, it has become clear that the immunoregulatory

features of MSCs are elicited by inflammatory cytokines,

mainly interferon-gamma and tumor necrosis factor-
opyright © Lippincott Williams & Wilkins. Unautho
alpha, resulting in the production of species-specific

immunosuppressive factors, namely indoleamine 2,3

dioxygenase in humans and nitric oxide in mice [28].

The in-vivo translation of these results were achieved

when the intravenous (i.v.) injection of MSCs into EAE

mice led to the striking inhibition of proliferation of

ex-vivo isolated lymph node T cells [29].

B lymphocytes are also the target of MSCs immuno-

suppressive activity. In fact, MSCs can inhibit in-vitro

proliferation of B cells, differentiation to plasma cells

and production of antibodies [30–32]. Similarly to what

was observed for T cells, i.v. MSCs administration in EAE-

affected mice resulted in the inhibition of the production

of immunoglobulins specific for the encephalitogenic

myelin antigen proteolipid protein [33]. Interestingly,

the suppression of immunoglobulin production was

recently demonstrated to depend on the effect of a variant

of the MSC-derived chemokine (C–C motif) ligand 2

(CCL2), which is proteolytically degraded by matrix

metalloproteinases secreted by MSCs themselves [34��].

A third cell type significantly affected by the interaction

with MSCs is the dendritic cell. MSCs can spoil dendritic

cell in-vitro maturation resulting in an impaired secretion

of interleukin (IL)-12 [35] and increased production of

IL-10 [36]. MSC-induced immature dendritic cells do not

upregulate major histocompatibility complex and costi-

mulatory molecules and poorly present antigens to naive

T cells [37]. These findings suggest that the net effect of

MSCs on adaptive immunity is the consequence of a

direct inhibition on T and B lymphocytes but also of an

impaired ability of MSC-affected immature dendritic

cells to properly instruct T cells, which, in turn, could

also affect the capacity of T cells to provide help to B cells

[24��].
Are mesenchymal stem cells
neuroprotective?
The original observation that MSCs can transdifferenti-

ate into neurons [21,22] in vitro and, upon in-vivo admin-

istration, acquire some markers of neural cells [38] is

currently a matter of controversy, as the marker analysis

alone may well be due to an aberrant expression [39,40].

Since then, in-vitro MSC neuronal differentiation has

been achieved by treatment with trophic factors [41] and

also by genetic manipulation [42]. Although the exploita-

tion of ‘in-vitro neuralized’ MSCs appears a promising

strategy for the treatment of neurodegenerative diseases,

it is not known whether in-vitro transdifferentiation

would result in the loss of other therapeutic properties

such as immunoregulatory features, thus hampering their

use in MS. On the contrary, current evidence from EAE

suggest that in-vivo administration of in-vitro expanded

undifferentiated MSCs does not result in a substantial
rized reproduction of this article is prohibited.
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CNS engraftment and acquisition of a neural phenotype

[33,34��,43,44��,45]. Regardless of the limited evidence

of transdifferentiation by histological analysis, there is

no clear experimental confirmation that MSC-derived

neuronal cells are able, when transplanted in vivo, to

correctly integrate among neural networks as functional

neurons. However, MSCs could act on neural cells

through other modalities that may lead to tissue repair.

For example, MSCs have been demonstrated in vitro
to rescue neurons from apoptosis [46,47�] and promote

neurite outgrowth [48]. It has also been demonstrated

that MSCs are able to produce a wide variety of

trophic factors, cytokines, chemokines and antioxidant

molecules, resulting in increased neuronal survival

[34��,49,50�,51]. Moreover, some secreted proteins could

trigger host brain plasticity, thereby inducing endogen-

ous precursor proliferation that, in turn, may lead to

neurogenesis [52] and oligodendrogenesis [44��,53,54].
Administration of mesenchymal stem cells
improves experimental autoimmune
encephalomyelitis
Clinical interest in EAE was sparked by the hope that

MSCs could, on the one hand halt the autoimmune attack

on the CNS and, on the other hand, repair injured tissue.

Preclinical studies demonstrated that this hypothesis was

correct but also that MSCs were clinically effective when

cells were given early, before the onset of the chronic

phase of disease, sustained by irreversible damage of the

nervous system. Unexpectedly, pioneer experimental

work demonstrated that a striking clinical effect was

achieved in EAE by i.v. administration of either syn-

geneic (mouse) [29] or xenogeneic (human) [55] MSCs.

In fact, i.v. administration resulted in the induction of

peripheral immune tolerance leading to the inhibition of

pathogenic T and B-cell reactivity [29,33]. Many other

groups have now confirmed that MSCs can ameliorate

EAE in different animal models when injected intra-

venously [43,44��,45], intraventricularly [56] and even

intraperitoneally [34��]. Although no clear evidence of

neural transdifferentiation was obtained in most of these

studies [33,34��,43,44��], MSCs administration was suffi-

cient to decrease axonal loss and improve neuronal survival

[33,56,57], as well as to induce oligodendrocytes prolifer-

ation and remyelination [44��]. These findings support the

concept that MSCs are likely to foster CNS repair, acting as

tolerogenic cells, elicited by inflammatory cues, on auto-

immune cells and as bioactive providers of trophic and

antiapoptotic factors leading to neuroprotection [51,58].
Clinical experience with mesenchymal stem
cells in multiple sclerosis
MSCs have been utilized in a few studies with limited

numbers of patients and also as single-case, uncontrolled
opyright © Lippincott Williams & Wilkins. Unauth
treatment by many patients obtaining yet unproven stem

cell therapies, a phenomenon known as ‘stem cell tour-

ism’ [59]. Despite the fact that allogeneic MSCs have

been shown to be well tolerated and effective in treating

graft versus host disease (GVHD) [60��], autologous

MSCs from MS individuals share almost identical func-

tional properties with those from healthy individuals [61]

and, therefore, have been preferred thus far for clinical

exploitation in MS. In pioneer studies, the administration

of autologous MSCs, either i.v. or intrathecal, was well

tolerated and, despite the lack of a proper clinical design

to address efficacy, exhibited some beneficial effect on

clinical and MRI parameters [62,63�,64]. In order to avoid

the proliferation of numerous small studies utilizing

MSCs for the treatment of MS, a consensus [65��] on

their utilization was recently published by a panel of

experts, setting the stage for an international phase II

clinical trial. The consensus recognized that, at this

stage, current evidence supports the i.v. administration

of autologous MSCs as inhibitors of the autoimmune

response in patients continuing to show inflammatory

activity despite attempts to treat with immunomodula-

tory agents, and proof of principle of MSC biological

activity on validated parameters such as MRI metrics

should be achieved before testing their ability to promote

tissue repair.
Neural stem cells definition
Neural precursor/stem cells (NPCs) can be detected in

the developing and adult CNS as a heterogeneous popu-

lation of proliferating, self-renewing and multipotent

cells, with the ability to differentiate toward different

neuroectodermal cell lineages [66,67]. In the study [67],

the authors describe that the therapeutic features of

NPCs were based mainly on bystander mechanisms. In

the adult CNS, at least two distinct areas, the subven-

tricular zone of the lateral ventricles and the subgranular

zone of the hippocampal dentate gyrus, have been

demonstrated to contain multipotent progenitors of

neural cells and, therefore, have been named CNS germ-

inal neurogenic niches [68]. Within the neurogenic

niches, NPCs are a restricted and diverse population of

progenitors whose behavior is regulated by a specialized

microenvironment leading to the generation of different

types of neurons [69]. It has been demonstrated that

endogenous NPCs residing in the germinal niches are

mobilized to demyelinated periventricular lesions by

inflammatory cues occurring during EAE and proliferate,

giving rise to neural cells [70]. Similarly, it has been

shown that activation of early glial precursors from germ-

inal niches occurs in MS, wherein they could give rise to

oligodendrocyte precursors [71]. However, the intrinsic

CNS ability of undergoing self-repair is impaired during

MS due to microenvironmental cues [72��] that could

be directly dependent on molecules associated with
orized reproduction of this article is prohibited.
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inflammation [67], due to a dysregulation of embryoge-

netic pathways [73], or both.
Therapeutic plasticity of neural precursor/
stem cells
Although NPCs are the natural progenitors of neural

cells, and NPCs-based therapies have been fairly

regarded as a source for newly formed CNS cells [74],

recent experimental data have shown that they display

unexpected therapeutic plasticity, which mostly relies on

diverse bystander effects [67]. A seminal study [75]

demonstrated that i.v. or intraventricular administration

of NPCs in mice with EAE led to their engraftment into

demyelinating lesions and to some level of differentiation

into nervous cells, including oligodendrocyte progenitors

actively remyelinating axons. Despite this early report,

most studies have shown very low neural differentiation

of transplanted NPCs. Conversely, it was reported that

systemically injected NPCs ameliorate EAE through

anti-inflammatory and neuroprotective mechanisms

[76,77]. These bystander mechanisms occur through

the engraftment of i.v. transplanted NPCs in the peri-

vascular area of inflamed CNS vessels where they form

atypical ectopic niches and release neurotrophins, immu-

nomodulatory molecules and factors inhibiting the for-

mation of glial scar [67]. Recent evidence shows that i.v.
opyright © Lippincott Williams & Wilkins. Unautho

Figure 1 The mechanisms involved in the therapeutic plasticity of

HSC, hematopoietic stem cell; MSC, mesenchymal stem cell; NPC, neural
injected NPCs also display regulatory functions of the

immune response within peripheral lymphoid organs

through the inhibition of myelin-specific peripheral T

cells [78] and an impairment of dendritic cell functions

through a bone morphogenetic protein 4-dependent

mechanism [79]. The study [78] shows that NPCs display

also the ability to regulate autoreactive immune cells in

the peripheral blood. Moreover, a recent study [80�] has

shown that intraventricularly transplanted NPCs could

lead also to the induction of endogenous neurogenesis, as

demonstrated by a mitogenic effect on host oligodendro-

cyte precursors. Although the clinical translation of these

preclinical studies is under scrutiny, it has been demon-

strated that human NPCs can be safely administered

intravenously in nonhuman primates with EAE and

result in the successful amelioration of symptoms and

disease mainly through immunoregulatory mechanisms

[81�].
Other (stem) cells for the treatment of
multiple sclerosis
Other types of myelin-forming cells have been trans-

planted into rodents affected by experimental CNS

demyelination [72��]. For example, transplantation of

oligodendrocyte progenitor cells into demyelinated lesions

inside the spinal cord leads to extensive remyelination
rized reproduction of this article is prohibited.
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[82]. Similar results have been obtained following the

transplantation of Schwann cells [83], olfactory ensheath-

ing cells [84] and also embryonic stem cells (ESCs) [85].

Interestingly, it has recently been shown that in-vitro

differentiation of ESCs to multipotent neural progenitors

ameliorates EAE but results in the loss of their capacity of

remyelinate upon in-vivo transplantation [86]. Several

concerns arise from these approaches. In particular, lin-

eage-restricted myelinogenic cells show limited growth

and expansion characteristics in vitro and, following in-vivo

transplantation, induce scarce remyelination, often due to

environmental cues limiting precursor differentiation and

proliferation and their limited ability to spread far from the

transplantation site [72��]. Further, the use of ESCs is

restricted by ethical and technical concerns about source of

cells and the intrinsic risk of tumor formation. On the basis

of these considerations, such strategies require further

studies before their clinical exploitation for the treatment

of MS.
Conclusion
To date, the only ‘stem cells’ that can be considered a

therapeutic option for MS are AHSCs, whose adminis-

tration, however, must be mainly considered as a rescue

therapy following intense immune suppression with

cytotoxic drugs and may, at best, lead to an immune

system less prone to autoimmunity (Fig. 1). Thus, in this

case, ‘stemness’ per se does not represent a therapeutic

opportunity for CNS repair. Other adult stem cells are

likely to provide a realistic opportunity for remyelination

and axon reorganization due to their therapeutic

plasticity. It is noteworthy that results from the admin-

istration of adult stem cells in preclinical models of MS

moved from almost opposite starting points to end up

with some common therapeutic features, although occur-

ring through complex and different mechanisms of

action. In fact, NPCs were first described as cells giving

rise to newly formed neural cells capable of remyelinat-

ing [75], then were shown to provide pleiotropic neuro-

protective factors in situ [77] and, more recently, to also

display a regulatory effect on the autoimmune response

[78] and induce endogenous neurogenesis [80�]. In con-

trast, MSCs were first demonstrated to induce peripheral

tolerance to myelin antigens [29] and then to be capable

of protecting neural cells through paracrine mechanisms

[50�] and even inducing local oligodendrocyte precursor

proliferation [44��]. Thus, a common signature defines

the therapeutic plasticity of adult stem cells based on

shared bystander activities, namely immunomodulation,

neuroprotection and induction of endogenous neurogen-

esis (Fig. 1).
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